SMOOTHING LOCALLY FLAT IMBEDDINGS1

BY R. C. KIRBY

Communicated by E. Dyer, August 23, 1965

The fundamental imbedding problem for manifolds is to classify the imbeddings of an n-manifold into a q-manifold under ambient isotopy. We announce here that the differentiable and topological cases of this problem for differentiable manifolds are the same if 2q > 3(n+1) and $q \ge 8$.

This follows from Theorem 2 below which states that a locally flat imbedding of a compact differentiable manifold M^n into a differentiable manifold Q^q is ambient isotopic to a differentiable imbedding if 2q > 3(n+1) and $q \ge 8$. Since this ambient isotopy may be chosen arbitrarily close to the identity map, the set of differentiable imbeddings is dense in the set of locally flat imbeddings of M^n in Q^q .

It will then follow that two locally flat imbeddings of M^n into Q^q are ambient isotopic if they are homotopic; hence the classification problem reduces to a problem in homotopy theory.

THEOREM 1. Let $f: B^n \to \operatorname{int} Q^q$ be a locally flat imbedding of the unit n-ball into Q^q . Such an f always extends to $f: R^q \to \operatorname{int} Q^q$. Let C^{n-1} be a compact differentiable submanifold of $\partial B^n = S^{n-1}$, and suppose that f is differentiable on a neighborhood of C^{n-1} in B^n . Let $q \ge 7$, 2q > 3(n+1) and $\epsilon > 0$. Then there exists an ambient ϵ -isotopy $F_t: Q^q \to Q^q$, $t \in [0, 1]$, satisfying

- (1) $F_0 = identity$,
- (2) F_1f is differentiable on int B^n and on a neighborhood of C^{n-1} in B^n ,
- (3) F_t =identity on $Q-N_{\epsilon}(f(B^n))$ and on $f(R^n-\operatorname{int} B^n)$ for all $t \in [0, 1]$,
- (4) $|F_t(x)-x| < \epsilon$ for all $x \in Q^q$ and $t \in [0, 1]$. $(N_{\epsilon}(X))$ is the set of points within ϵ of X.)

THEOREM 2. Let $f: M^n \rightarrow Q^q$ be a locally flat imbedding such that either $f(M^n) \subset \inf Q^q$ and $q \ge 7$ or $f^{-1}(\partial Q^q) = \partial M^n$ and $q \ge 8$. Let 2q > 3(n+1) and $\epsilon > 0$. Then there exists an ambient ϵ -isotopy $F_t: Q^q \rightarrow Q^q$, $t \in [0, 1]$, satisfying

- (1) $F_0 = identity$,
- (2) Fif is a differentiable imbedding,

¹ This is an announcement of a portion of the author's dissertation at the University of Chicago written under Professor Eldon Dyer.

- (3) $F_t = identity \ on \ Q N_{\epsilon}(f(M^n)) \ for \ all \ t \in [0, 1],$
- (4) $|F_t(x)-x| < \epsilon \text{ for all } x \in Q^q \text{ and } t \in [0, 1].$

The proof follows from Theorem 1 by considering the handlebody decomposition of M^n , and smoothing the imbedding of one handle at a time.

Only imbeddings of M^n into Q^q satisfying $f(M^n) \subset \operatorname{int} Q^q$ or $f^{-1}(\partial Q^q) = \partial M^n$ will be considered. Let T be the set of equivalence classes of locally flat imbeddings of M^n into Q^q under equivalence by ambient isotopy. Similarly, let D(C) be the set of equivalence classes of differentiable (combinatorial) imbeddings of M^n into Q^q under equivalence by ambient diffeotopy (ambient combinatorial isotopy). Let H be the homotopy classes of locally flat imbeddings of M^n into Q^q . H is a subset of M^n , M^n , M^n into M^n into M^n . Then we have the following commutative diagram where the maps are the natural projections.

 β is clearly onto for all n and q. Gluck has shown [1] that ρ and γ , and hence β and βi are isomorphisms for $q \ge 2n+2$. Haefliger has shown [2] that π is a monomorphism and that α is an isomorphism if 2q > 3(n+1).

It follows from Theorem 2 that π is also epimorphic if 2q > 3(n+1) and either $q \ge 7$ when $f(M^n) \subset \operatorname{int} Q^q$ or $q \ge 8$ when $f^{-1}(\partial Q^q) = \partial M^n$. Then π and β are isomorphisms in this range of dimensions.

REFERENCES

- 1. H. Gluck, Embeddings in the trivial range, Ann. of Math. 81 (1965), 195-210.
- 2. A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82.

University of California, Los Angeles