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A calculation of Pin* bordism groups

R. C. KirBY'! and L. R. TAYLOR'

We begin by recalling the definition of the Pin and Spin-bordism groups. For each
integer # = | there are compact Lie groups, Spir(n), Pin~(n) and Pin*(n). Atiyah,
Bott and Shapiro [ABS], described the groups Spin(r) and Pin~(n) in terms of the
Clifford algebra associated to the negative definite form on R*. Lam [L], describes
these as well as Pin *(#n), the group coming from the Clifford algebra associated to
the positive definite form on R”. Another definition is the foliowing. The group
Spin(n) is the double cover of the group SO(n). It is a Z/2 central extension of SO(n)
and is classified by w, e H*(BSO(n); Z/2): indeed it is the unique non-trivial Z2
central extension. The two groups Pin* are double covers of O(n). They are also Z/2

"central extensions: Pin~ is classified by w,+ w?e HXBO(n); Z/2) and Pin™*
classified by w;.

There is a bordism theory of mamfolds with Spin, Pin~, or Pin™ structure, and
we use the term bordism groups for the bordism groups of a point. Anderson, Brown
and Peterson calculated the Spin-bordism groups, [ABP1], and the Pin ~-bordism
groups, [ABP2]. We complete the story by calculating the Pin*-bordism groups.

Both the Pin*-bordism groups are 2-torsion, and they have cyclic summands of
order equal to an arbitrarily high power of 2, Both bordism groups are modules over
the Spin bordism ring. OF the real projective spaces, the RP%'s have Pin* structures
and the RP**2s have Pin~ structures. The other result in this paper is that
Pin =-bordism, modulo the Spin bordism submodule generated by the real projective
spaces, is a Z/2 vector space.

To describe our results in more detail, recall the 2-local decomposition of the
spectrum MSpin from [ABP1].

MSpin— \/ n(2k)bo<8k> \/ {2k + 1)bo{8k + 2> \/ w(k)K(Z /2, k}
kz0
where bo{r} denotes the spectrum obtained from the usual BO spectrum by kiiling
all the homotopy groups in dimensions less than r, and K(A,r) denotes the
Eilenberg—MacLane spectrum with one non-zero homotopy group isomorphic to 4
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g 41 = 82 Bn+1 8n+2 8n+3 8rn+4 8+5 Brn+6 847
M(D) Abo2y Z2@QZ[2 Zp2  Zpen+l Z2 Z|2 0 Zj2¢n+2 Z2
M(3) Abo(2) Zj2™-! Zji2 ZR@Z2 Zj2 Zj2w+: 7R Z[2 0

Jor0=i<8 nz0and8n+iz=3. In the case n=0,i=0 or 1,
7, (M(1) A bo2>) =, (M(3) A bo{2>) =0.

In the case n =0,i =2,
T (M(1) A bo{2)) = n,(M(3) A be(2)) =Z/2.

COROLLARY 2. The top line of the first table, with n =0, gives the Pin—
bordism groups through dimension 7; the second line of the first table, with n =0,
gives the Pin~ bordism groups through dimension 7. =

An alternate calculation of these bordism groups through dimension 4 is given
in [KT]. While trying to understand these low-dimensional calculations, we were
led to the general results presented here. The proofs will be given in the second
section and a short table of the bordism groups is included at the end of the
paper.

Notice that Pin~ bordism is a Z/2 vector space except in dimensions congru-
ent to 2 mod 4. Moreover, RP" has a Pin~ structure if » is congruent to 2 mod 4.
Likewise, Pin* bordism is a Z/2 vector space except in dimensions congruent (o
0 mod 4 and RP” has a Pin* structure if 7 is congruent to 0 mod 4.

Recall some facts about the structure of the Spin bordism ring. The bo{
factors are indexed by partitions. For a fixed n = 8k we have a different bo{8k)>
for each partition, J, of 2k such that J has no 1’s in it. For any partition, et n(J)
denote the sum of the elements of J, or in other words, #(J) is the integer for
which J is a partition. The bo{(8k + 2}’s arc indexed by the partitions, J, with no
I's for which n(J) =2k + 1. In the sequel, let bo{J)> denote bo{dn(J)) if n(J) is
even or be(4n(J) —2> if n(J) is odd. There is also a copy of be<0)>. There are
elements M in dimensions 4n(J), where J is a partition of »(J) with no 1’s. These
manifolds satisfy the condition that in our fixed decomposition of MSpin, the
bordism class of M, is a generator of m,,,,bo{J> and maps to zero in 7, of all
the other summands. ‘

Let X(J,n) =RP"x M, if n(J) is even. If n is even, fix a Pin* structure on
RP" and consider X(J,n) as an element of Pin* bordism. If »(J) is odd,
RP™ x M, will be divisible by 2 in the corresponding Pir bordism group, so let
X(J, n) denote an element in Pint bordism such that 2X(J, n) = RP" x M,. Note
that for Pin* bordism we are asserting that M, = M, x RP® is divisible by 2. Let
C(J. 2n) denote a cyclic group whose order is the order of the element X(J, 2n) in
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the appropriate Pin bordism group. There are natural maps C(J, 4n) = MPin%,;y 1 4n
and C(J,4n +2) » MPing, 5y 1 an s 2-

THEOREM 3. The order of X(J, 2n) is given as follows:

n(J) even 23 +1 93k +3 4k + 4 Dk +4
n(J) odd ek +2 9%k +2 4k +3 N4k + 5

The sum of the natural maps
@ CJ, 4n) > MPin}
J.n

is injective with image a summand: the complementary summand is a Z|2 vector
space. The sum of the natural maps

(;B C(J, 4n +2) » MPin;

is injective with image a summand. the complementary summand is a Z[2 vector
space. In both sums, n =0 and J runs over all partitions with no 1s.

COROLLARY 4. The Pin* bordism groups, modulo the Spin bordism submod-
ule generated by the RP*, are Z[2 vector spaces. The Pin~ bordism groups, modulo
the Spin bordism submodule generated by the RP**2, are Z |2 vector spaces.

Finally, we pause to consider the standard question of the image of Pin™
bordism in unoriented bordism, denoted .4 "4. Using the techniques of Anderson,
Brown and Peterson {ABP2], we show

COROLLARY 5. The image of the natural map MPind — A« equals all
bordism classes all of whose Stiefel— Whitney numbers involving w,(t) vanish, where
T denotes the tangent bundle.

After this paper was submitted, we learned of the paper of Giambalvo [G],
which also calculates MPin* bordism. Giambalvo does the calculation via the
Adams’ spectral sequence and arrives at the same answer we do. He also attempted
to analyse the role of the RP?"’s in Pin* and Pin~ bordism, using the map ¥
described below, but his results differ considerably from ours. Specifically, we claim
that the order of RP**+* in Pin* bordism is 25"+ and that his Corollary 3.5 is
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wrong (see the discussion preceding Theorem 3). The table on page 399 is also
incorrect: the factor corresponding to M(2) A bo{8) is missing and the Z% should
be Z /28

We would like to thank 8. Stolz for numerous conversations on the subject of
Pin bordism.

Proofs
We begin with two lemmas to reduce the calculation to a diagram chase.
LEMMA 6. The ith Pin* bordism group is isomorphic to
n;(MSpin A M(4k +3)) for any k = 0.
The ith Pin~ bordism group is isomorphic to
7, (MSpin A M(4k + 1)) for any k = 0.

In both cases, the usual transversality construction gives the isomorphism.

Proof. Let us begin with the Pin™* case. Standard transversality constructions
identify m;(MSpin A M(4k + 3)) with the bordism theory of i-dimensional mani-
folds with a Spin structure on the bundle t & (4k + 3) det (1), where t is the
tangent bundle to the manifold and det (¢) is the determinant line bundle. It is
easy to check that for any bundle n, 44 has a canonical Spin structure, so the
above bordism theory is equivalent to the bordism theory of i-dimensional mani-
folds with a Spin structure on the bundle @ 3 det (7). Next one can compute that
any bundle # has a Pin* structure iff # @ 3 det (1) has a Spin structure, and, since
this is a universal relation, one can set up a one-to-one correspondence between
Spin structures on n @3 det () and Pin* structures on #. Hence our bordism
theory is equivalent to the bordism theory of i-dimensional manifolds with a Pin*
structure on the tangent bundle.

The Pin~ case is entirely similar. G

Let M(Z/2,0) =¢°ue' with attaching map of degree 2 and denote the
homotopy ith group of MSpin A M(Z/2,0} by (MSpin A Z/2),. These groups
can Iarge}y be calculated by applying Spin bordism to the cofibration sequence
s0 23 §°—M(Z/2,0), since the degree 2 map on S° induces multiplication by 2
on the Spin bordism groups.
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These groups have an interpretation as Z/2-Spin bordism. This is the bordism
theory consisting of a manifold M with a codimension-one submanifold N; an
orientation on M — N which does not extend across any component of N; an
orientation of the normal bundle of N in A; a Spir structure on M — N; a Spin
structure on N; and diffeomorphisms which preserve the Spin structures from N to
the boundary components of M — N. We do not need this interpretation in the
sequel.

EEMMA 7. There exists a cofibration sequence
M(Z/2, 0) = M(2r — 1) - Z2M(2r + 1) (8)
Hence we get long exact sequences
- (MSpin A Z/2), > MPinF —— MPin ,—- -
= (MSpin A Z/2), = MPinj —s MPini y—+ -+

In both cases, the map  is defined by starting with a manifold M, finding a
submanifold N = M dual to w,, and then forming the transverse intersection, N\ N.
Notice that W can also be described by taking the natural map
Wi M(r) > Z2M(r + 2) and smashing it with MSpin. In particular, the two exact
sequences above decompose in the same way that MSpin does.

Proof. Recall that T(ré) = RP*/RP'~!. Indeed, RP"— RP"*" with normal
bundle ré|z».. Hence we have a map RP"*"—T(r&|gpn) and the composite
RP" <= RP"+ "5 T(rf|gp-) is the zero-section. Hence a copy of RP™! disjoint
from RP” in RP"*" is null-homotopic in T(r|zpn), sO we get a map RP"*’/
RP™ ' T(ré|gpn) which is easily checked to be a homotopy equivalence.

The cofibration sequence is now clear since RP*/RP>~? is homotopy equlva-
lent to T((2r — 1)é[zp1) and this is £~ 'M(Z/2, 0).

The description of the map y also follows. Consider a Spir boundary
M™*+2 =1 and a map f2 M —T{(2r — 1){). The map  sends f to the composite
M = T((2r +3)2) of f and the map g: T((2r + 1}) - T((2r + 3)¢). To see what
happens to the underlying Pin manifolds, we can assume that f lands in
T((2r — 1)&|gpw) for some large N, and we get a cofibration sequence like (8) but
taking place inside of RPY*%+! instead of RP*. We make the new map trans-
verse to the zero-section to get out Pin manifold, P. The map g becomes a map
g: TU2r + 1)¢|gpn) = T((2r + 3)E|gpn-2), SO to get Y(P) we make the map
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The other cases are similar so we only discuss the key points. Begin with
the next case, 8% + 2 and start with & = 0. This means we are trying to identify RP?
in MPin, = Z/8. Applying ¢ and consulting the first table from Proposition 3, we
see that it is a generator. We can now use induction and the four-fold iterate of y
1o handle the case n(J) even. In the case n(J} is odd, we need to identify M, x RP2
It lives in a group of order 4, and table one of Proposition 10, shows that  is an
tsomorphism, so M, x RP? is of order 2 in Pin~ bordism, since M, has order 2 in
Pin~* bordism. Hence we define X(s, J, 8% + 2) as above using the four-fold iterate
of . The cases 8k + 4 and 8% + 6 are done in the same way.

Now let us define X(J, 2n) = ¥(J, 2n) if a(J) is even; for n{J) odd, define
X(J,2m) = X(2%29+1 —(2n + 1), J,2n). From the above discussion, we know
the orders of each of the X(J,2n)’s: let C(J, 2n) denote a cyclic group of this
order with a fixed generator and map C{(J,2n) to MPin* by sending the fixed
generator to X(J, 2n). We get maps

®;,CW, 4n) - MPin} and @ ,,C(J, 4n+2)—> MPin_.

For n fixed we see from above that @,,C(J,4n)—> MPin} and
@,,.C(J, 4n + 2) > MPin, are split injective. Theorem 3 asserts that these maps
are still split injective when we also sum over the »n.

We do the Pin* case. Fix a dimension r = 8k. Note that C(/J, 4n) lands .in
dimension r iff r = 4n(J) + 4n. If n(J) is even, then C(J, 4n) has order 2***+' and if
n(J) is odd, C(J, 4n) has order 2*7+2, In particular, two C(J, 4n)’s which land in
the same dimension and have the same order have the same n and the same »(J).
If r =8k + 4 we get different numbers but the same conclusion. Finally note that
both @, 4nsy+ 4. C(J, 4n) and Mpin; have the same number of Z/2* summands
for all k> 1, and if we restrict the map @,_ 4u)+4.C(J, 4n) > MPin to the
summands of order 2* we get a split injection. It is an elementary algebra exercise
to verify that this means that the map is a split injection and the complementary
summand is a Z/2 vector space. :

The Pin~ case is entirely similar.

The proof of Corollary 5

We begin with a general discussion of characteristic numbers. Let BG be a space
such as BSO, BPin™, etc. equipped with a map to BO. Let M be a manifold with
a G structure; i.e. the tangent bundle map M — B0 has a fixed lift to a map
7 : M — BG. Then M" determines a homomorphism H"(BG; Z[2) -+ Z/2 given by
sending x € H'(BG; Z/2) to t*(x) evaluated on the fundamental class of M. This
defines a homomorphism T : QF - Hom (H{BG; Z[2), Z/2). If we let M(G) denoie
the Thom spectrum for the inverse to the universal bundle over BO pulled-back to
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BG, the Thom isomorphism shows that we can equally regard T as a homomor-
phism 7T :Qf — Hom (H*(M(G); Z/2), Z{2). If a homomorphism 5: H(M(G);
Z[2)—~Z/2 is to be in the image of T, then b(ax) =0 for any g in the mod 2
Steenrod algebra of dimension at least 1 and any x € H¥(M(G); Z/2). If we let o
denote the mod 2 Steenrod algebra, we can turn Z/2 into an & module by letting
all the Sg' act trivially. Then Hom,, (H"(M(G); Z/2), Z/2) = Hom (H"(M(G);
Z[2), Z[2) is precisely the set of homomorphisms satisfying our condition and
Condition P of [ABP2] merely says that the image of T is precisely
Hom,, (H"(M(G); Z/2), Z/2). (It is also true that Hom, (H"(M(G); Z/2), Z/2) =
E3"(M(G)) in the Adams spectral sequence for 7 (M(G)). Moreover,
E%(M(G)) = E3"(M(G)) is precisely the image of T. Hence the collapse of the
Adams spectral sequence is sufficient for M(G) to have Property P.)

Now Hom, (H*(M(G); Z/2), Z/2) behaves like any other Hom, so we can
apply it to the short exact sequences of cohomology groups coming from (8).
It is not hard to see directly that E}"(M(Z/2,0) Abo{0>) =2Z/2 if r=0;
EY(M(Z/2,0) Abe{2)>) =Z/2 if r =2 and both groups are 0 otherwise. Theorem
4.4 of [ABP2] says that E"(M(1) Abo{0d) =Z/2 if r=0 or r=2 (mod4);
EST(M(1) Abo{2))=Z/2if r =2 or r =0 (mod 4) and both groups are 0 other-
wise. One can also check by hand that E3"(M(3) Abo{0)) =Z/2if r=0and is 0
for r <3 and that E3"(M(3) Abo{2)>) =Z/2 if r =2 and is 0 otherwise for r < 5.
By comparing the two exact sequences coming from (8) we can compute
E3"(M(3) Abo{0)) and - E$"(M(3) A bo(2)). Morc importantly, we can see
that ¥: E3"(M(1) A bo{0)) - E9"~%(M(3) A bo{0)) and : E$(M(1) A bo{2)) -
E3"~3(M(3) Abo{2)) are both epic. Since M(1) A bo¢0)) and ¥ : EX"(M(1) A
bo{2>) = E3" = M(3) Abo{2)) are both epic. Since M(1} Abo¢0> and
M(1) A bo(2} satisfy Property P by [ABP2], this shows that M(3) A bo{0> and
M(3) A bo(2) also satisfy Property P. The Eilenberg—MacLane summands also
satisfy Property P, hence so does MPin*.

Since H¥(BO; Z/2} -+ H*(BPin*; Z/2) is onto, it follows formally that a mani-
fold, M", is unoriented bordant to a Pin* manifold iff all the characteristic
numbers in the kernel of H"(BO;Z/2) - H(BPin*; Z/2) vanish on M. This
kernel is the ideal in H*(BOQ; Z/2) generated by w, and its images under the
Steenrod algebra: e.g. w, is in the kernel. It is always the case however that, if all
the characteristic BO-numbers of a manifold which involve x € H'(BO; Z/2) van-
ish, then all the numbers involving a(x) for any @ € & also vanish. Hence M is
bordant to a Pin* manifold iff all tangential characteristic numbers involving w,
vanish. ' : .

We may as well finish by remarking that MSpin A Z/2 satisfies Property P and
that a manifold is unoriented bordant to an element in MSpin A Z/2 iff all the
numbers involving @, and w? vanish,
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The tables

Here are the promised Pin* bordism groups through dimension 95, arranged in
two tables. The second table gives A(n), the number of Z/2 summands in MPin;" .
The first table gives numbers n{n) which enable us to find the other summands in
dimensions eongruent to 0 mod 4. For MPing, , ,, the summands of order greater
than 2 are @nr(E)Z/2**+*-%¥ beginning with i=0 and continuing until
4n+ 4 — 2i = 2. For MPing, 4, the summands of order greater than 2 are @r(i)Z/
24+ 52 peginning with i = 0 and continuing until 4z + 4 — 2/ = 3. As an example,
28=8-3+4s50 MPin},=4Z2 @ (1Z2"° @ 0Z2“ ® 1Z2" @ 1Z2"° @ 2Z/2®
@ 2Z[2° @ 4Z[2* @ 4Z/2?)

n nln)
01 4 2 8 7 12 21 16 ss 20 17
1o 52 9 3 13 24 17 6 21 165
21 6 4 10 12 14 34 18 s 22 210
31 74 11 14 15 a1 19 105 23 253
n A(m)
01 12 0 24 ¢ - 36 17 48 113 60 394 T2 1556 84 4965
1o 131 25 s 37 34 49 130 61 s 73 1764 85 s843
21 14 1 26 20 38 41 50 244 62 606 74 2440 86 6541
31 150 27 17 39 27 51 222 63 548 75 2423 87 es0s
4 0 16 2 28 4 40 4 52 152 64 673 76 2224 88 7536
50 17 4 29 12 41 40 53 10 65 m 77 2694 89 412
60 18 s 30 15 42 100 54 258 66 1150 78 3041 90 10515
70 19 7 H s 43 96 55 28 67 1114 79 2995 91 10814
81 201 32 16 44 54 56 281 68 959 80 3475 92 10730
90 21 4 33 45 so 57 324 69 1209 81 3907 93 12365

10 3 22 5 34 48 46 106 58 s34 70 1378 82 5103 94 13750
11 3 23 2 35 a 47 81 59 s03 71 1310 83 si68 95 14135
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