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1 Introduction

Given a function f : R→ R, we ask the following question: what can be the set of points of continuity, say
A, of f? In basic analysis courses, one might encounter many f with strange behavior. For example, if f is
the Dirichlet function given by

f(x) =

{
1, if x ∈ Q
0, otherwise

then A = ∅; if f is the Riemann function given by

f(x) =

{
1
q , if x = p

q for some coprime p, q ∈ Z, q > 0

0, otherwise

then A = R\Q; moreover, if f is given by

f(x) =

{
x, if x ∈ Q
0, otherwise

then A = {0}.
At a glance, A seems to be rather arbitrary. What are the restrictions on A? How to define a function f for
a given A that satisfies some specific properties? This article gives the necessary and sufficient condition for
a set A to be the set of points of continuity of a real function f : R→ R.

2 The amplitude function

For a function f : R→ R, we define its amplitude function ω : R→ [0,∞] by ω(x) = limδ→0 sup{ |f(x1)− f(x2)| |
x1, x2 ∈ (x− δ, x+ δ) }. We shall prove a property about the function ω.

Lemma. For any t > 0, the set S = ω−1([0, t)) is open in R.

Proof. Let x ∈ S. Then ω(x) = c < d < t for some c, d ≥ 0.
Choose δ > 0 such that sup{ |f(x1)− f(x2)| | x1, x2 ∈ (x− 2δ, x+ 2δ) } < d.
Then for any y ∈ (x − δ, x + δ), x1, x2 ∈ (y − δ, y + δ), we have |f(x1)− f(x2)| < d. Thus we readily have
ω(y) ≤ d < t, y ∈ S. This means (x− δ, x+ δ) ⊂ S. The lemma follows.

3 The main theorem

Now we state our necessary and sufficient condition:

Theorem. A set A ⊂ R is the set of points of continuity for some function f : R → R if and only if A is
the countable intersection of some open sets A1, A2, · · · in R.

1



Proof. We first begin with necessity.
If f : R→ R is a function with A being its set of points of continuity, denote the amplitude function of f by
ω. By definition of ω we know that A = ω−1(0). Thus

A = ω−1(0) =

∞⋂
n=1

ω−1([0,
1

n
))

is a countable intersection of open sets ω−1([0, 1
n )), n = 1, 2, · · · , by the above Lemma.

Now we prove sufficiency. Suppose A = ∩∞n=1 where An are open in R.
Define Bn = ∩nk=1An, n ≥ 1, B0 = R. Then B0 ⊃ B1 ⊃ · · · are a series of open sets, and that ∩∞n=1Bn = A.
Now we define

f(x) =


0, if x ∈ A
1
n , if x ∈ (Bn−1\Bn) ∩Q for some n ∈ N+

2
2n−1 , if x ∈ (Bn−1\Bn)\Q for some n ∈ N+

We claim that the set of points of continuity of f is exactly A.
In fact, for any x ∈ A, ε > 0, find N > 1

ε , then for any y ∈ BN , we have |f(y)− f(x)| ≤ 1
N < ε. Since ε is

arbitrary, we conclude that f is continuous at x.
For any x 6∈ A, say x ∈ Bn−1\Bn and any neighborhood U of x, there exist some y ∈ U such that x, y are
not both rational or irrational. By definition we easily know that f(x) 6= f(y), and thus |f(y)− f(x)| ≥
max{ sup{

∣∣f(y)− 1
n

∣∣ | f(y) 6= 1
n }, sup{

∣∣∣f(y)− 2
2n−1

∣∣∣ | f(y) 6= 2
2n−1} } = 1

n(2n+1) . We conclude that f is

discontinuous at x.
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